Pursuit-Evasion Strategies by Model Checking

Hongyang Qu

University of Sheffield

1 December 2015

Outline

- Introduction to pursuit-evasion problem
- Compute clearing strategies by model checking
- Find optimal execution of cleaning strategies
- Conclusions

Outline

- Introduction to pursuit-evasion problem
- Compute clearing strategies by model checking
- Find optimal execution of cleaning strategies
- Conclusions

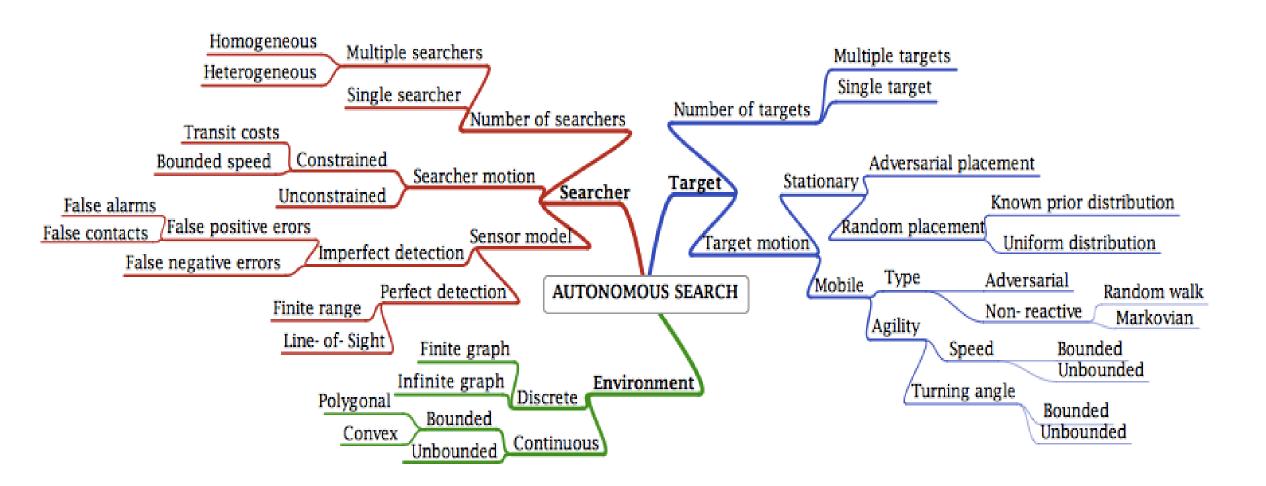
What is Pursuit-Evasion problem?

- It studies how to search for a smart, fast and evading target in an area
- Not only interesting to military, police or border patrol!
- The problem of closing a museum for the night with many rooms and few cameras – human guards need a P/E strategy - also by robots!
- Finding confused elderly people who wander off
- Capturing fleeing animals,
- Locating lost team members of first response teams or survivors in disaster scenarios,
- Finding people in cave systems, etc.

Assumptions for "good" theory

- Planar problems: sensor ranges, velocities of robots and evader, shapes of the environment, visibility conditions
- Buildings: layout known, connectivity known
- Natural environments: map is known
- Worst case assumptions about evaders: no knowledge about their numbers, no limits to their speed!
- Strategies for search in unknown terrains is largely unexplored area of research, i.e. under SLAM

A P/E Problems Map (Chung (2011))

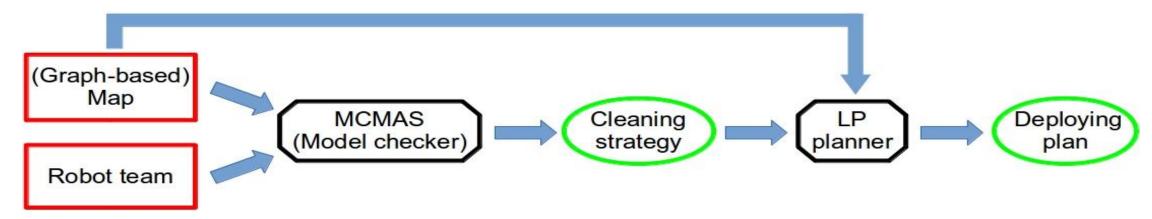


Our Pursuit-Evasion problem

- Search for an omniscient and smart target that moves at unbounded speed (conservative assumption)
- Formal concept of "contamination" is used
- Searchers can execute actions of clearing and blocking
- A graph based model is used to abstract the environmental model into a graph of locations (vertices) and passages (edges).

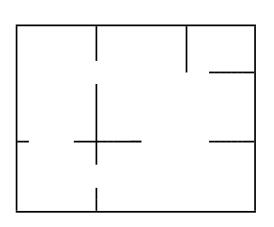
Our Objectives

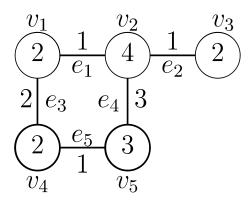
- Search time and cost optimization for autonomous robot teams in the graph clear (GC) model
- Solution: Application of model checking and LP to solve and optimize robotic search algorithms
- Modelling of different pursuit-evasion problems
- Automated generation of new search strategies from a temporal logic formula in MCMAS + application of an LP solver

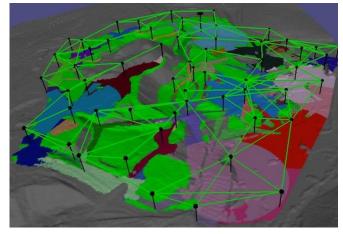


Abstraction of the environment into a graph

In a building:







on a natural terrain

Graph states

- Vertices are either clear (R) or contaminated (C)
- Edges are clear (R), contaminated (C) or blocked (B)
- The state-space of surveillance graphs is

$$\nu \in \mathcal{V}(G) = \{\mathcal{R}, \mathcal{C}\}^n \times \{\mathcal{R}, \mathcal{C}, \mathcal{B}\}^m$$

where v is a state (n=n.o.vertices, m=n.o.edges)

Clearing actions and costs

- A searcher can sweep a vertex (location)
- A searcher can block an edge (a passage)
- ullet For n vertices and m edges the searcher action can be represented by

$$a = \{a_1, \dots, a_{n+m}\} \in \{0, 1\}^{n+m} = \mathcal{A}(G)$$

The cost of an action is defined by

$$c(a) = \sum_{i=1}^{n} a_i w(v_i) + \sum_{j=1}^{m} a_{n+j} w(e_j)$$

Actions rules for "intruders"

 If there is a non-blocked contamination path to a vertex from a contaminated edge or vertex then that vertex becomes automatically contaminated

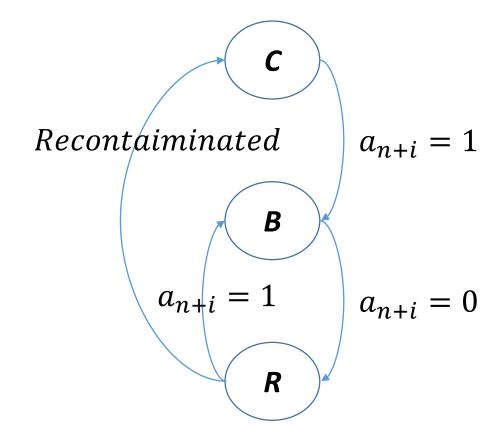
• If there is a non-blocked contamination path to an edge from a contaminated edge or vertex then that edge becomes contaminated

State changes of the surveillance graph

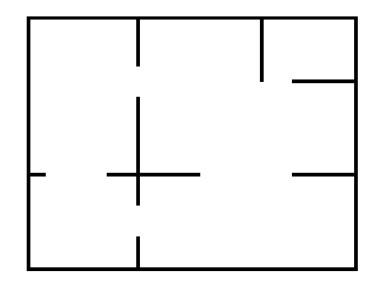
• Vertex *i*

Recontaininated $a_i = 1$

• Nodes *j*



Examples of cleaning strategies



$\underbrace{\begin{array}{c} v_1 \\ 2 \\ \hline e_1 \end{array}}$	$\underbrace{v_2}{4}$	$\frac{1}{2}$ $\stackrel{v_3}{{\bigcirc}}$
$2e_3$	$e_4 3$	
$\underbrace{2}_{01}\underbrace{e_5}_{1}$	3	

u(G)	a	c(a)
CCCCC CCCCC	10000 10100	5
RCCCC BCBCC	00010 10101	6
RCCRC BCBCB	01100 11011	12
RRRRC BBRBB	00001 00011	7
RRRRR RRRBB	00000 00000	0
RRRRR RRRRR		

Outline

- Introduction to pursuit-evasion problem
- Compute clearing strategies by model checking
- Find optimal execution of cleaning strategies
- Conclusions

Objectives

Application of model checking to robotic search algorithms

Modelling of different pursuit-evasion problems

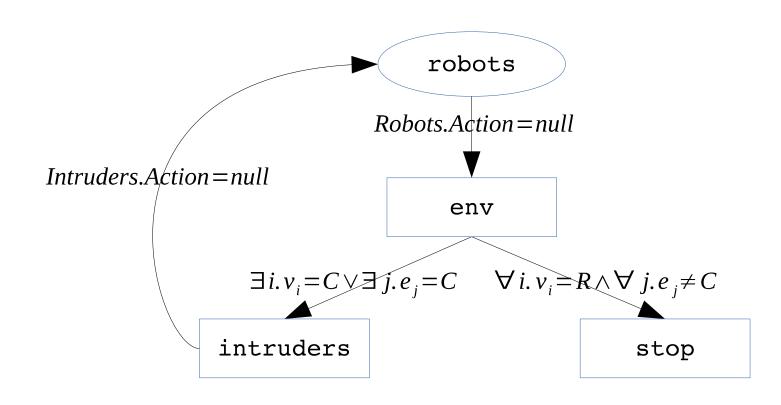
Rigorous comparison between problem formulations

 Automated generation of new search strategies from a temporal logic formula

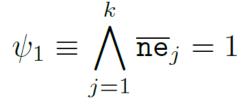
Modelling state transitions in SGs

- Three agents will be used to model the graph and its transitions:
 Environment, Robots, Intruders.
- Environment agent :
- Variables $v_i \in \{R,C\}$, $e_i \in \{R,C,B\}$, $nv_i \in \{1,0\}$ for sweeping, $ne_i \in \{1,0\}$ for blocking action
- Variable **turn** \in {robots, intruders, env, stop} is used to schedule the turn of the agents and the environment itself for changes of variables .

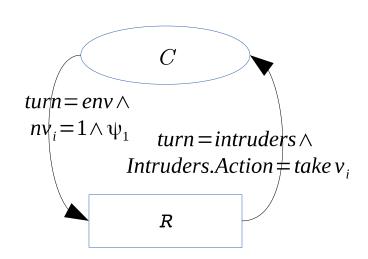
Environment actions and protocols for the variable **turn**

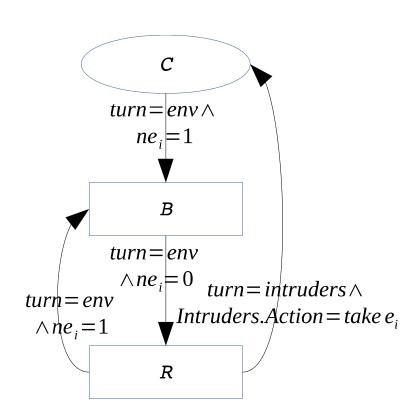


Evolution of v_i and e_i in **Environment**

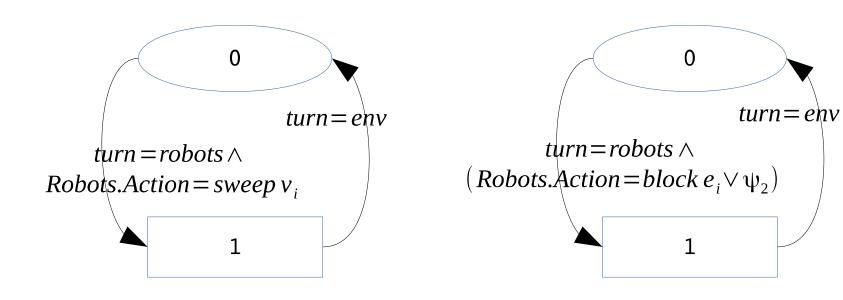


(Adjacent edges to v_i are e_j .)





Evolution of nv_i and ne_i in **Environment**



The Robots agent (1)

- Variables: n = 0, ..., d (number of agents)
- Actions: sweep v_i , block e_i , null
- Protocol: initially

 $Environment.\mathtt{turn} = \mathtt{robots} \land$

$$\mathbf{n} = d \wedge \sum_{i=1}^{n} Environment. \mathbf{v}_i = \mathcal{C},$$

and all actions are enabled. Later **sweep** v_i is enabled if v_i is contaminated and an adjacent vertex is clear:

$$Environment. exttt{turn} = exttt{robots} \land \ Environment. exttt{v}_i = \mathcal{C} \land \bigvee_{j=1}^k Environment. exttt{v}_j = \mathcal{R},$$

The Robots agent (2)

• Block e_i and null are enabled if

```
Environment.\mathtt{turn} = \mathtt{robots} \land k \leq \mathtt{n} < d \land \\ Environment.\mathtt{ne}_j = 0 \land \\ ((Environment.\mathtt{v}_p = \mathcal{R} \land Environment.\mathtt{v}_q = \mathcal{C}) \lor \\ (Environment.\mathtt{v}_p = \mathcal{C} \land Environment.\mathtt{v}_q = \mathcal{R})),
```

where v_p and v_q are the end vertices of e_j and k is the number of robots needed to block e_i .

• In all other cases only **null** is enabled.

Handling the number of robots

• For each sweep action sweep v_i , the value n is defined as n' = n - k

where k is the number of robots needed to sweep v_i .

• For each block action block e_j , the value n is defined as n'=n-t

where t is the number of robots needed to block e_i .

• When no vertices are to be swept or edges blocked, i.e. when action is *null*, then *ne* is reset to its initial value.

The **Intruders** agent

- Only one variable: *recontamination* (Boolean)
- Actions: take v_i , take e_i (to recontaminate)
- take v_i is enabled if

 $Environment.\mathtt{turn} = \mathtt{intruders} \land$

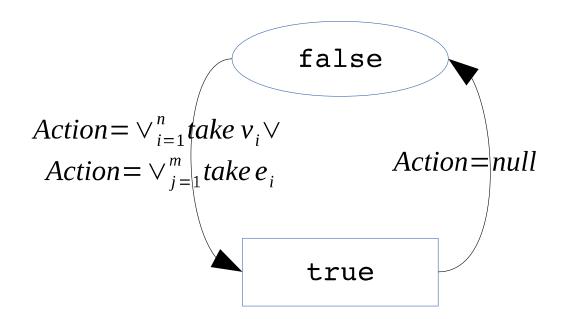
$$Environment.v_i = \mathcal{R} \wedge \bigvee_{i=1}^k Environment.\bar{\mathsf{e}}_j = \mathcal{C},$$

• take e_j is enabled if

 $Environment. \texttt{turn} = \texttt{intruders} \land Environment. \texttt{e}_j = \mathcal{R} \land \\ (Environment. \bar{\texttt{v}}_1 = \mathcal{C} \lor Environment. \bar{\texttt{v}}_2 = \mathcal{C})$

Evolution of Intruders agent

Evolution of variable recontamination:



Specifications for CTL queries

- Recontamindated holds whenever the recontamination variable of the Intruders holds.
- **Graph-cleared** becomes true when all vertices and edges are free of contamination, i.e.

$$\bigwedge_{i=1}^{m} \mathbf{v}_i = \mathcal{R} \wedge \bigwedge_{j=1}^{m} (\mathbf{e}_j = \mathcal{R} \vee \mathbf{e}_j = \mathcal{B}).$$

The CTL query to be used

MCMAS is run to check whether the formula

 $E(\neg recontaminated\ U\ graph_cleared).$ can be satisfied.

• If the answer is yes then MCMAS provides sample paths, each of which can be used as our graph clear algorithm (strategy).

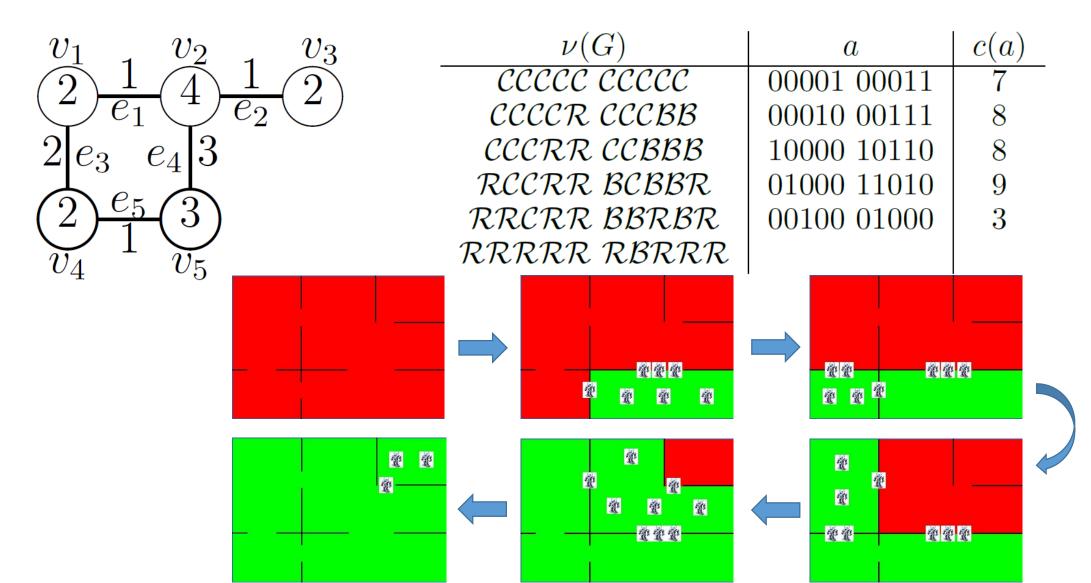
The main Theorem

If

$$E(\neg recontaminated\ U\ graph_cleared)$$

is satisfied by the SG/CG graph model, then every path satisfying it is an algorithms for the robots to clear the graph and no recontamination can occur during the clearing process.

Example: Graph-Clear strategy

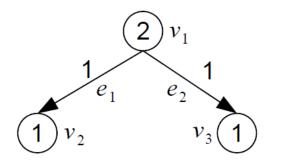


Outline

- Introduction to pursuit-evasion problem
- Compute clearing strategies by model checking
- Find optimal execution of cleaning strategies
- Conclusions

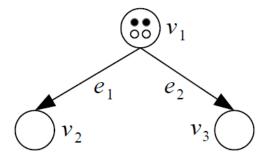
Time-optimal search strategies

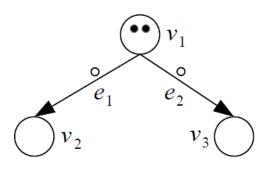
 The model-checker-based strategy-search can result in solutions of varying time periods in terms of occupancy steps

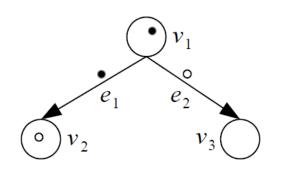


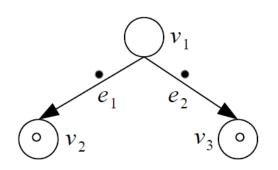
$\nu(G)$	a	c(a)
CCC CC	100 11	4
\mathcal{RCC} \mathcal{BB}		
RRCBB	001 01	2
RRR RR		

$\nu(G)$	a	c(a)
CCC CC	100 11	4
CCC CC RCC BB		4
RRR RR		









Optimizing the clearance time under resource constraints: assumptions

- Vertex sweeping and edge clearing costs remain in terms of number of robots.
- Robot travel-distances along edges are specified.
- Robot transition from edge to vertex is assumed to need same time for all robots everywhere.
- All robots are assumed to travel with same speed, the travel time of robots is proportionate to distance

LP system for optimal strategies (1)

Assumptions

- Let l = n + m be the number of possible locations, and k searchers.
- The graph can be cleared in n steps.
- Initially searchers are placed into a vertex or an edge.

General constraints

- $l \times (n+1)$ binary LP variables $X_1, \dots, X_{l \cdot (n+1)}$ for locations of each robot
- The initial location of each robot

$$X_{j \cdot l+1} + \dots + X_{(j+1) \cdot l} = 1$$

• The location of each robot at the *i*-th step

$$X_{i \cdot k \cdot l + j \cdot l + 1} + \dots + X_{i \cdot k \cdot l + (j+1) \cdot l} = 1$$

•
$$\Delta_1 = (n+1) \cdot k \cdot l$$

LP system for optimal strategies (2)

- General constraints
 - For each robot moving from location p to q,

$$2 \cdot X_{f(p,q)} - X_{(i-1)\cdot k \cdot l + j \cdot l + p} - X_{i \cdot k \cdot l + j \cdot l + q} \le 0$$

where

$$f(p,q) = \Delta_1 + (i-1) \cdot k \cdot l^2 + j \cdot l^2 + (p-1) \cdot l + q$$

• The following constraint guarantee that only one of l^2 variables is 1

$$\sum_{1 \le p,q \le l} X_{f(p,q)} = 1$$

• $\Delta_2 = n \cdot k \cdot l^2$

LP system for optimal strategies (3)

- General constraints

 - $\Delta_3 = n$
 - Object function

$$\sum_{1 \le i \le n} D_i$$

LP system for optimal strategies (4)

- Constraints for Graph-Clear strategies
 - Let c_{e_r} be the cost of blocking edge e_r
 - $Y_{i \cdot m + r}$ represents e_r being blocked at the i-th step

$$c_{e_r} \cdot Y_{i \cdot m + r} - \sum_{0 \le j < k} X_{i \cdot k \cdot l + j \cdot l + n + r} \le 0$$

• The following equation guarantees that $Y_{i \cdot m + r}$ is 1 iff the number of robots in the edge is sufficient

$$\sum_{j=0}^{k-1} X_{i \cdot k \cdot l + j \cdot l + n + r} + \left(c_{e_r} - 1 - k \right) \cdot Y_{i \cdot m + r} \le c_{e_r} - 1$$

• $\Delta_4 = n \cdot m$

LP system for optimal strategies (5)

- Constraints for Graph-Clear strategies
 - Let c_{v_r} be the cost of sweeping vertex v_r
 - $Z_{i \cdot n + r}$ represents v_r being swept at the i-th step

$$c_{v_r} \cdot Z_{i \cdot n + r} - \sum_{0 \le j < k} X_{i \cdot k \cdot l + j \cdot l + r} \le 0$$

• The following equation guarantees that $Z_{i\cdot n+r}$ is 1 iff the number of robots in the vertex is sufficient

$$\sum_{j=0}^{k-1} X_{i \cdot k \cdot l + j \cdot l + r} + \left(c_{v_r} - 1 - k \right) \cdot Z_{i \cdot n + r} \le c_{v_r} - 1$$

• Each adjacent edge e_s has to be blocked during sweeping

$$Z_{i \cdot n + r} - Y_{i \cdot m + s} \le 0$$

• $\Delta_5 = n^2$

LP system for optimal strategies (6)

- Constraints for Graph-Clear strategies
 - A Graph-Clear strategy clears one vertex at each step $\sum_{r=1}^{n} Z_{i\cdot n+r} \ge 1$
 - When a strategy finishes, all vertices have to cleared $\sum_{i=1}^{n} Z_{i\cdot n+r} \geq 1$
 - Contiguous search requirement

$$Z_{i \cdot n + r} - \sum_{j=1}^{i-1} \sum_{p \in V_r} Z_{j \cdot n + p} \le 0$$

$$Y_{i \cdot m + r} - \sum_{j=1}^{i} \sum_{p \in E_r} Z_{j \cdot n + p} \le 0$$

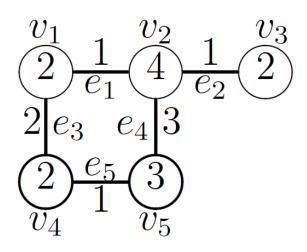
$$Y_{(i-1) \cdot m + r} - \sum_{j=1}^{i} Z_{j \cdot n + p} - Y_{i \cdot m + r} \le 0$$

• $\Delta = \Delta_1 + \Delta_2 + \Delta_3 + \Delta_4 + \Delta_5$

LP system for optimal strategies (7)

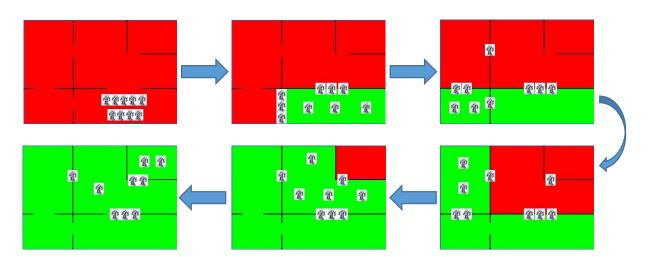
- Constraints for executing a predefined strategy
 - $\sum_{j=1}^{n} X_{i \cdot n \cdot l + j \cdot l + n + r} \ge c_{e_r}$
 - $\sum_{j=1}^{n} X_{i \cdot n \cdot l + j \cdot l + r} \ge c_{v_r}$
 - $\Delta = \Delta_1 + \Delta_2 + \Delta_3$

Example: execution of Graph-Clear strategy

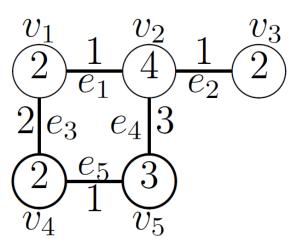


u(G)	a	c(a)
CCCCC CCCCC	00001 00011	7
\mathcal{CCCCR} \mathcal{CCCBB}	00010 00111	8
\mathcal{CCCRR} \mathcal{CCBBB}	10000 10110	8
RCCRR BCBBR	01000 11010	9
RRCRR BBRBR	00100 01000	3
RRRRR RBRRR		

Ston		Robot							Time	
Step	1	2	3	4	5	6	7	8	9	
0	v_5	v_5	v_5	v_5	v_5	v_5	v_5	v_5	v_5	
1	v_5	e_5	v_5	e_5	e_4	e_4	e_4	v_5	e_5	1
2	v_4	e_3	e_4	e_3	e_4	e_1	e_4	e_5	v_4	2
3	e_3	v_1	e_4	v_1	e_4	e_1	e_4	v_5	e_3	1
4	v_2	v_2	e_4	$\overline{e_1}$	e_4	e_2	v_2	$\overline{e_4}$	v_2	3
5	e_2	v_2	e_4	\overline{e}_1	e_4	v_3	e_2	e_4	v_3	2

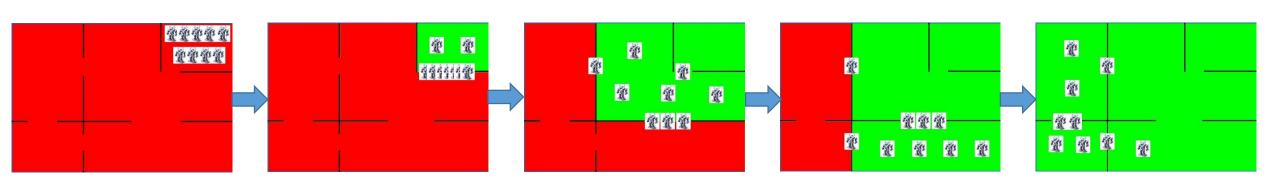


Example: an optimal Graph-Clear strategy



Step	Robot								Time	
ьсер	1	2	3	4	5	6	7	8	9	1 11116
0	v_3	v_3	v_3							
1	e_2	v_3	e_2	v_3	e_2	e_2	e_2	e_2	e_2	1
2	e_4	e_2	e_1	v_2	v_2	e_4	e_4	v_2	v_2	2
3	e_5	e_4	e_4	v_5	e_4	v_5	\overline{v}_5	e_1	v_5	2
4	v_4	v_4	v_1	e_1	v_1	v_5	e_5	e_3	e_3	3

u(G)	a	c(a)
CCCCC CCCCC	00100 01000	3
CCRCC CBCCC	01000 11010	9
CRRCC BBCBC	00001 10011	8
CRRCR BRCBB	10010 10101	8
RRRRR BRBRB		



Outline

- Introduction to pursuit-evasion problem
- Compute clearing strategies by model checking
- Find optimal execution of cleaning strategies
- Conclusions

Conclusions

- Methodology was developed to use model checking methods to find pursuit-evasion solutions for robots and use Linear Programming to derive execution strategies for time optimization.
- Model checking methods can be implemented onboard robots to enhance their collective problem solving ability.
- Coordination of real-time execution robustness is a future problem yet.

Reference

- Hongyang Qu, Andreas Kolling, Sandor M Veres. Formulating Robot Pursuit-Evasion Strategies by Model Checking. 19th World Congress of the International Federation of Automatic Control (IFAC'14), pages 3048-3055, 2014
- Hongyang Qu, Andreas Kolling, Sandor M Veres. Computing Time-Optimal Clearing Strategies for Pursuit-Evasion Problems with Linear Programming. Towards Autonomous Robotic Systems - 16th Annual Conference (TAROS'15), page 216-228, 2015