Pursuit-Evasion Strategies by
Model Checking

Hongyang Qu
University of Sheffield

1 December 2015

Outline

* Introduction to pursuit-evasion problem
 Compute clearing strategies by model checking
* Find optimal execution of cleaning strategies

* Conclusions

Outline

* Introduction to pursuit-evasion problem

What is Pursuit-Evasion problem?

* |t studies how to search for a smart, fast and evading target in an area
* Not only interesting to military, police or border patrol!

* The problem of closing a museum for the night with many rooms and
few cameras — human guards need a P/E strategy - also by robots !

* Finding confused elderly people who wander off
e Capturing fleeing animals,

* Locating lost team members of first response teams or survivors in
disaster scenarios,

* Finding people in cave systems, etc.

Assumptions for “good” theory

* Planar problems: sensor ranges, velocities of robots and evader,
shapes of the environment, visibility conditions

e Buildings: layout known, connectivity known
* Natural environments: map is known

* Worst case assumptions about evaders: no knowledge about their
numbers, no limits to their speed !

 Strategies for search in unknown terrains is largely unexplored area of
research, i.e. under SLAM

A P/E Problems Map (Chung (2011))

Homogeneous

- Multiple searchers Multiple targets
Heterogeneous /
Single searcher /

Number of searchers

Single target

Number of targets

Transit costs
Bounded speed -i Constrained

Adversarial placement

" Searcher motion
Unconstrained

False alarms Known prior distribution

False contacts (False positive erors

Sensor mode arget motion ' istributi
, ~. Uniform distribution
False negative errors J/[mperfect detecnnn/\ ,

N Perfect detection, | AUTONOMOUS SEARCH Adversarial . 1 dom walk

Finite range /\ Non-reactive | parkovian
Line- of- Sight) pinite graph Speed Bounded
Infinite graph Environment / Unbounded
Polygonal Discrete Turning angle - rounded
:.'L]nhnu nded

Convex {inbounded Continuous

Our Pursuit-Evasion problem

e Search for an omniscient and smart target that moves at unbounded
speed (conservative assumption)

* Formal concept of “contamination” is used
e Searchers can execute actions of clearing and blocking

* A graph based model is used to abstract the environmental model
into a graph of locations (vertices) and passages (edges).

Our Objectives

e Search time and cost optimization for autonomous robot teams in the
graph clear (GC) model

* Solution: Application of model checking and LP to solve and optimize
robotic search algorithms

* Modelling of different pursuit-evasion problems

* Automated generation of new search strategies from a temporal logic
formula in MCMAS + application of an LP solver

(Graph-based)
Map

/s?/\

- MCMAS - Cleaning Deploying
(Model checker) :\ strategy ::\ [:\ plan ,

Abstraction of the environment into a graph

In a
building:

ona
natural
terrain

Graph states

* \ertices are either clear (R) or contaminated (C)
e Edges are clear (R), contaminated (C) or blocked (B)
* The state-space of surveillance graphs is

v € V(@) = {R,C}" x {R,C,B}™

where v is a state (n=n.o.vertices, m=n.o.edges)

Clearing actions and costs

* A searcher can sweep a vertex (location)

* A searcher can block an edge (a passage)
* For n vertices and m edges the searcher action can be represented by

a = {CI,l, c o ,an+m} E{O, 1}n—|—m — A(G)
* The cost of an action is defined by

C(CL)_ — Z?:l CLZ"LU(UZ') =+ Z;n:1 an-|—jw(6j)

Actions rules for “intruders”

* If there is a non-blocked contamination path to a vertex from a
contaminated edge or vertex then that vertex becomes automatically
contaminated

* If there is a non-blocked contamination path to an edge from a
contaminated edge or vertex then that edge becomes contaminated

State changes of the surveillance graph

* Vertex i * Nodes j
Recontaiminated a; =1 Recontaiminated Apyi = 1
()
a'n+i = 1 Cln_H —_ O

(2

Examples of cleaning strategies

V() a

CCCCC cceece 10000 10100
RCCCC BCBCC 00010 10101
RCCRC BCBCB 01100 11011

RRRRC BBRBB | 00001 00011
RRRRR RRRBB | 00000 00000
RRRRR RRRRR

o
=S BN
S—"

Outline

 Compute clearing strategies by model checking

Objectives

* Application of model checking to robotic search algorithms
* Modelling of different pursuit-evasion problems
* Rigorous comparison between problem formulations

 Automated generation of new search strategies from a temporal logic
formula

Modelling state transitions in SGs

* Three agents will be used to model the graph and its transitions:
Environment, Robots, Intruders.

* Environment agent :

* Variables v; € {R,(C}, e; € {R,C, B}, nv; € {1,0} for sweeping, ne; €
{1,0} for blocking action
* Variable turn € {robots, intruders, env, stop} is used to schedule

the turn of the agents and the environment itself for changes of
variables .

Environment actions and protocols for the
variable turn

Robots.Aiition =null

Intruders.Action =null

env

intruders stop

Evolution of v; and e; in Environment

k
’Z/)lE/\Ejzl
i=1

(Adjacent edges to v; are e; .)

o

N - B 4
turn=env A
vi=IAW o m =intruders A

Intruders.Action = takev,

R

turn=env A\
ne.=1

vy

turn=env
Ane,=

turn=jenv

Ane,

0 turn=intruders A

Intruders.Action=take e,

X

Evolution of nv; and ne; in Environment

turn=env turn=env

turn=robots N
(Robots.Action=block e,V ,)

turn =robots A
Robots.Action=sweep v,

The Robots agent (1)

* Variables: n = 0, ..., d (humber of agents)
* Actions: sweep v;, block e;, null

* Protocol: initially
Environment.turn = robotsA

n—=dA Z Environment.v;, = C,
1=1
and all actions are enabled. Later sweep v; is enabled if v; is
contaminated and an adjacent vertex is clear:

Environment.turn = robotsA
k

Environment.v; =C A \/ Environment.v; =R,
J=1

The Robots agent (2)

e Block e and null are enabled if

Environment.turn = robots A k < n < dA
Environment.ne; = 0N
((Environment.v, = R A Environment.v, = C)V
(Environment.v, = C A Environment.v, = R)),

where Vp and v, are the end vertices of e; and k is the number of
robots needed to block e;.

* In all other cases only null is enabled.

Handling the number of robots

* For each sweep action sweep v; , the value n is defined as
/
n=n-k

where k is the number of robots needed to sweep v;.

* For each block action block e; , the value n'is defined as
!/
n=n-t

where t is the number of robots needed to block e;.

* When no vertices are to be swept or edges blocked, i.e. when action
is null, then ne is reset to its initial value.

The Intruders agent

* Only one variable: recontamination (Boolean)
* Actions: take v; , take e; (to recontaminate)

e take v; is enabled if
' Environment.turn = intruders/A

k
Environment.v; =R A \/ Environment.e; = C,

e take e; is enabled if

Environment.turn=intruders A Environment.e; = RA
(Environment.v; = C V Environment.vo = C)

Evolution of Intruders agent

Evolution of variable recontamination :

Action=V_,

Action=V"_, takee, Action=null

true

Specifications for CTL queries

* Recontamindated holds whenever the recontamination variable of
the Intruders holds.

* Graph-cleared becomes true when all vertices and edges are free of
contamination, i.e.

n

/\Vi:R/\ 7\(ej:72\/ej:)

1=1 71=1

The CTL query to be used

e MICMAS is run to check whether the formula

E(—recontaminated U graph_cleared).

can be satisfied.

* If the answer is yes then MCMAS provides sample paths, each of
which can be used as our graph clear algorithm (strategy).

The main Theorem

If

E(—recontaminated U graph_cleared)

is satisfied by the SG/CG graph model, then every path satisfying it is an
algorithms for the robots to clear the graph and no recontamination
can occur during the clearing process.

Example: Graph-Clear strategy

v(G)

a

CCCCC cecece
CCCCR ccCBB
CCCRR CCBBB

RCCRR BCBBR
RRCRR BBRBR
RRRRR RBRRR

00001 00011
00010 00111
10000 10110
01000 11010
00100 01000

o
W © 0w o NS
S—

Outline

* Find optimal execution of cleaning strategies

Time-optimal search strategies

* The model-checker-based strategy-search can result in solutions of
varying time periods in terms of occupancy steps

v(G) a |c

e
<

v(G) a |c
CCC CC (100 11
RCC BB (011 11

RRR RR

P
S

CCC CcC 100 11
RCC BB |010 11
RRC BB |001 01
RRR RR

DO O >~

Optimizing the clearance time under resource
constraints: assumptions

* \Vertex sweeping and edge clearing costs remain in terms of number
of robots.

* Robot travel-distances along edges are specified.

* Robot transition from edge to vertex is assumed to need same time
for all robots everywhere.

* All robots are assumed to travel with same speed, the travel time of
robots is proportionate to distance

LP system for optimal strategies (1)

* Assumptions

* Let | = n + m be the number of possible locations, and k searchers.
* The graph can be cleared in n steps.
* |nitially searchers are placed into a vertex or an edge.

 General constraints
* [X (n+ 1) binary LP variables X3, ..., X;.(n41)for locations of each robot
* The initial location of each robot
Xj~l+1 + et X(j+1)-l =1
* The location of each robot at the i-th step

Xi.k.l.|.j.l.|_1 + -+ Xi'k'l+(j+1)-l = 1
° A]_:(Tl‘l‘l)kl

LP system for optimal strategies (2)

* General constraints
* For each robot moving from location p to g,

2 Xrep,q) — X(i-D)kel+jl+p — Kikel+joirg = 0
where
fo)=08+0G-1D) -k-P+j-P+(p-1-l+gq
* The following constraint guarantee that only one of [# variables is 1

lep,qlef(p,q) =1
o Az - Nn: k y lz

LP system for optimal strategies (3)

* General constraints
* Let D; be the maximum distance that a robot can move at the i-th step
/\osj<k{(21ansl dpq 'Xf(p,q)) - D= 0}
*A;=n
* Object function
leiSn Di

LP system for optimal strategies (4)

* Constraints for Graph-Clear strategies
* Let ¢, be the cost of blocking edge e,

* Yi.m+r represents e, being blocked at the i-th step

Co.. * Y. — e te Xifolt i <0
Tr =
e l-m+r Zo<]<k lk-l+j-l+n+r

* The following equation guarantees that Y;.,,,.,- is 1 iff the number of robots in
the edge is sufficient

k—
Z] (}Xlkl+]l+n+r+(cer_1_k) Ylm+7’—Cer_1
A, =n-m

LP system for optimal strategies (5)

* Constraints for Graph-Clear strategies
* Let ¢, be the cost of sweeping vertex v,
* Zin+r represents v, being swept at the i-th step

Cv, Zi-n+r o Zosj<k Xi-k-l+j-l+r <0
* The following equation guarantees that Z;.,,,,- is 1 iff the number of robots in
the vertex is sufficient

Z? (}Xlkl+]l+r+(cvr_1_k) Zln+r — r_l
» Each adjacent edge e, has to be blocked during sweeping
Zin+r — Yimss =0
¢ AS = nz

LP system for optimal strategies (6)

* Constraints for Graph-Clear strategies

* A Graph-Clear strategy clears one vertex at each step
11}=1Zi-n+r = 1

 When a strategy finishes, all vertices have to cleared

?=1ZiOn+r = 1

e Contiguous search requirement
i—1
Lin+r — j=1 ZpEVT Zj-n+p <0
i
Yim+r — j=1 ZpEET Zj-n+p <0

Y(i—l)-m+r o ;’=1Zj-n+p —Yim+r =0
¢ A:A1+A2+A3+A4+A5

LP system for optimal strategies (7)

e Constraints for executing d predefined strategy
?=1Xi-n-l+j-l+n+r = Ce,

?=1Xi-n-l+j-l+r = Cv,.
e A = Al + AZ + A3

Example: execution of Graph-Clear strategy

Robot .
SeP TS T3 Ta 5 6 = T8 [0 e

U5 |U5 |Us | U5 |Us | U5 | U5 | Us | Us

V5| €5 U5 €5 €4 (€4 €4 V5 €5

U4 |€3|€4|€3|€4(€1|€4|€5|V4

3|U1|€4|V1|€4|€1|€4|V5]|€3

V2|2 €4 €1 €4 (€E2|V2]|€4 U2

Q=W N~
™
W

DO 0| = DO =

€2|V2|€4|€1|€4|V3|€2(€4 V3

V(G) a

cla
CCCCC cccee 00001 00011 | 7
CCCCR CCCBB 00010 00111 | 8
CCCRR CCBBB 10000 10110 8
RCCRR BCBBR 01000 11010 9
RRCRR BBRBR | 00100 01000 3
RRRRR RBRRR

Example: an optimal Graph-Clear strategy

Robot

v(G)

a

SN o325 67 8 0] ™
0 [lvs|vs|vs|vs|vs|vs|vs|vs|vs
1 |lea|vs|ea|vs|ea|ea|ea|ea|en 1
2 |lealea|e1|va|va|esa|ea|va|v2 2
3 |les|ealeqa|vs|ea|vs|vs|er|vs 2
4 |lvg|vg|vi|eq|vi|vs|es|es|es 3

CCCCC ccceece

CCRCC CcBCCC

CRRCC BBCBC
CRRCR BRCBB
RRRRR BRBRB

r
Bnnnn

00100 01000
01000 11010
00001 10011
10010 10101

Outline

* Conclusions

Conclusions

* Methodology was developed to use model checking methods to find
pursuit-evasion solutions for robots and use Linear Programming to
derive execution strategies for time optimization.

* Model checking methods can be implemented onboard robots to
enhance their collective problem solving ability.

* Coordination of real-time execution robustness is a future problem
yet.

Reference

* Hongyang Qu, Andreas Kolling, Sandor M Veres. Formulating Robot
Pursuit-Evasion Strategies by Model Checking. 19th World Congress of
the International Federation of Automatic Control (IFAC’14), pages
3048-3055, 2014

* Hongyang Qu, Andreas Kolling, Sandor M Veres. Computing Time-
Optimal Clearing Strategies for Pursuit-Evasion Problems with Linear
Programming. Towards Autonomous Robotic Systems - 16th Annual
Conference (TAROS’15), page 216-228, 2015

