
Pursuit-Evasion Strategies by
Model Checking

Hongyang Qu

University of Sheffield

1 December 2015

Outline

• Introduction to pursuit-evasion problem

• Compute clearing strategies by model checking

• Find optimal execution of cleaning strategies

• Conclusions

Outline

• Introduction to pursuit-evasion problem

• Compute clearing strategies by model checking

• Find optimal execution of cleaning strategies

• Conclusions

What is Pursuit-Evasion problem?

• It studies how to search for a smart, fast and evading target in an area

• Not only interesting to military, police or border patrol!

• The problem of closing a museum for the night with many rooms and
few cameras – human guards need a P/E strategy - also by robots !

• Finding confused elderly people who wander off

• Capturing fleeing animals,

• Locating lost team members of first response teams or survivors in
disaster scenarios,

• Finding people in cave systems, etc.

Assumptions for “good” theory

• Planar problems: sensor ranges, velocities of robots and evader,
shapes of the environment, visibility conditions

• Buildings: layout known, connectivity known

• Natural environments: map is known

• Worst case assumptions about evaders: no knowledge about their
numbers, no limits to their speed !

• Strategies for search in unknown terrains is largely unexplored area of
research, i.e. under SLAM

A P/E Problems Map (Chung (2011))

Our Pursuit-Evasion problem

• Search for an omniscient and smart target that moves at unbounded
speed (conservative assumption)

• Formal concept of “contamination” is used

• Searchers can execute actions of clearing and blocking

• A graph based model is used to abstract the environmental model
into a graph of locations (vertices) and passages (edges).

Our Objectives
• Search time and cost optimization for autonomous robot teams in the

graph clear (GC) model

• Solution: Application of model checking and LP to solve and optimize
robotic search algorithms

• Modelling of different pursuit-evasion problems

• Automated generation of new search strategies from a temporal logic
formula in MCMAS + application of an LP solver

Abstraction of the environment into a graph

Task AssignmentGraph ConstructionHeight Map

Terrain Classif ication

Graph Strategies

Server Traj ectory Planning

v3v2v1

vy

e1 e2 e3

vx

λv x
(e)e a1

a2

a3

a4

t̃1 t̃2

⌧1

⌧2

⌧0

⌧0

⌧3

⌧4

⌧1

⌧0

a1

a2

a3

a4

t̃1 t̃2

⌧1

⌧2

⌧0

⌧0

⌧3

⌧4

⌧1

⌧0

1

1
4

5

0

0

0

0

0

2

2

0

1

1

Sear cher s in the f ield

GPS data

N ext step

Target locations

Fig. 9. A high level overview of the system.

fig. 1 has a resolution of 1m per pixel. The entire area of the

site is approximately 700,000 m2. The lowest point in the

map is set to 0m elevation and the highest point is at 122m.

Gascola has a lot of seasonal shrubs and other vegetation

that influence visibility and movement of agents. We hence

surveyed the terrain a week prior to the deployment of the

agents and added the annotations seen in fig. 10. Collecting

detailled height maps is a considerable efforts and these

annotations allow us to accomodate short term changes in

the terrain.

Fig. 10. Our sample map of the Gascola area outside of Pittsburgh with
additional annotation. In green we see cluttered terrain, mostly shrubs and
debris, red are steep areas that are not traversable by our agents and black
areas not admissible and define the area of the search.

The hierarchical approach yields a significant reduction of

the graph complexity particularly on cluttered maps while

guaranteeing a full coverage of the terrain. On the Gascola

map the random sampling yielded in average 102 vertices

and 240 edges, whereas the hierarchical approach reduced

this amount in average to graphs with 62 vertices and 130

edges. The reduction had a positive impact on the number

of agents needed for the schedule. Solutions computed based

on randomly sampled graphs needed in average 13.9 ± 1.1

agents, whereas solutions based on hierarchical sampling

required in average 7.8 ± 0.2 agents. Note that results were

averaged over 100 experiments each. Finally, we selected a

graph and with a strategy requiring eight agents computed

on the graph shown in 11. The associated detection sets for

all vertices are also shown in fig. 11. These were uploaded

to the mobile devices so that agents can see what detection

sets they are responsible for.

Fig. 11.

We then computed the execution time using our proce-

dure from Section V yielding an assignment that takes 175

minutes to execute. In order to determine the impact of our

procedure on execution time we compared it to 10,000 ran-

dom assignments. These random assignments simply assign

free agents randomly to new tasks at each step. Here we get a

solutions with a mean execution time of 349.3056± 34.0350

minutes and with a maximum at 491.6365 and minimum

at 236.4207. Hence the improvement is significant and can

safe our searchers in the field in Gascola a whole hour of

search time. Obviously, the problem deserves further study

and experimentation on more maps. It should also be noted

that instead of using an LBAP solution at each level we can

solve the general assignment problem and thereby minimize

the sum of all travel times instead of the maximum. This

could be useful for applications in which energy conservation

is more important and some of the execution time can

sacrificed.

All participants, eight searchers and two evaders, received

a 15 minute instruction on how to use the application.

The two evaders were given a head-start of another 15

minutes. They were instructed to make use of the available

information on all searchers as best as possible to try to

avoid being captured. Most agents were instantly able to

follow the suggested paths and reach their locations. Two

agents, however, had considerable difficulty at first to orient

themselves and each one got lost once causing a delay

of the execution but never leading to a breach between

the boundary of contaminated and cleared space. After the

first hour, however, all agents were comfortable following

the instructions as the execution proceeded further. The

experiment continued until the first IPads ran out of battery

In a

building:

on a

natural

terrain

Graph states

• Vertices are either clear (𝑅) or contaminated (𝐶)

• Edges are clear (𝑅), contaminated (𝐶) or blocked (𝐵)

• The state-space of surveillance graphs is

where 𝑣 is a state (𝑛=n.o.vertices, 𝑚=n.o.edges)

Clearing actions and costs

• A searcher can sweep a vertex (location)

• A searcher can block an edge (a passage)

• For 𝑛 vertices and 𝑚 edges the searcher action can be represented by

• The cost of an action is defined by

Actions rules for “intruders”

• If there is a non-blocked contamination path to a vertex from a
contaminated edge or vertex then that vertex becomes automatically
contaminated

• If there is a non-blocked contamination path to an edge from a
contaminated edge or vertex then that edge becomes contaminated

State changes of the surveillance graph

• Nodes 𝑗• Vertex 𝑖

C

R

𝑎𝑖 = 1𝑅𝑒𝑐𝑜𝑛𝑡𝑎𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑

C

B

𝑎𝑛+𝑖 = 1𝑅𝑒𝑐𝑜𝑛𝑡𝑎𝑖𝑚𝑖𝑛𝑎𝑡𝑒𝑑

R

𝑎𝑛+𝑖 = 0𝑎𝑛+𝑖 = 1

Examples of cleaning strategies

Outline

• Introduction to pursuit-evasion problem

• Compute clearing strategies by model checking

• Find optimal execution of cleaning strategies

• Conclusions

Objectives

• Application of model checking to robotic search algorithms

• Modelling of different pursuit-evasion problems

• Rigorous comparison between problem formulations

• Automated generation of new search strategies from a temporal logic
formula

Modelling state transitions in SGs

• Three agents will be used to model the graph and its transitions:
Environment, Robots, Intruders.

• Environment agent :

• Variables 𝑣𝑖 ∈ {𝑅, 𝐶}, 𝑒𝑖 ∈ {𝑅, 𝐶, 𝐵}, 𝑛𝑣𝑖 ∈ {1,0} for sweeping, 𝑛𝑒𝑖 ∈
{1,0} for blocking action

• Variable turn ∈ {𝑟𝑜𝑏𝑜𝑡𝑠, 𝑖𝑛𝑡𝑟𝑢𝑑𝑒𝑟𝑠, 𝑒𝑛𝑣, 𝑠𝑡𝑜𝑝} is used to schedule
the turn of the agents and the environment itself for changes of
variables .

Environment actions and protocols for the
variable turn

Evolution of 𝑣𝑖 and 𝑒𝑖 in Environment

(Adjacent edges to 𝑣𝑖 are 𝑒𝑗 .)

Evolution of 𝑛𝑣𝑖 and 𝑛𝑒𝑖 in Environment

The Robots agent (1)

• Variables: 𝑛 = 0,… , 𝑑 (number of agents)

• Actions: sweep 𝑣𝑖, block 𝑒𝑖, null

• Protocol: initially

and all actions are enabled. Later sweep 𝑣𝑖 is enabled if 𝑣𝑖 is
contaminated and an adjacent vertex is clear:

The Robots agent (2)

• Block 𝑒𝑗 and null are enabled if

where 𝑣𝑝 and 𝑣𝑞 are the end vertices of 𝑒𝑗 and 𝑘 is the number of
robots needed to block 𝑒𝑗.

• In all other cases only null is enabled.

Handling the number of robots

• For each sweep action sweep 𝑣𝑖 , the value 𝑛 is defined as
𝑛′ = 𝑛 –𝑘

where 𝑘 is the number of robots needed to sweep 𝑣𝑖.

• For each block action block 𝑒𝑗 , the value n is defined as
𝑛′ = 𝑛 – 𝑡

where 𝑡 is the number of robots needed to block 𝑒𝑗.

• When no vertices are to be swept or edges blocked, i.e. when action
is 𝑛𝑢𝑙𝑙, then 𝑛𝑒 is reset to its initial value.

The Intruders agent

• Only one variable: recontamination (Boolean)

• Actions: take 𝑣𝑖 , take 𝑒𝑗 (to recontaminate)

• take 𝑣𝑖 is enabled if

• take 𝑒𝑗 is enabled if

Evolution of Intruders agent

Evolution of variable recontamination :

Specifications for CTL queries

• Recontamindated holds whenever the recontamination variable of
the Intruders holds.

• Graph-cleared becomes true when all vertices and edges are free of
contamination, i.e.

The CTL query to be used

• MCMAS is run to check whether the formula

can be satisfied.

• If the answer is yes then MCMAS provides sample paths, each of
which can be used as our graph clear algorithm (strategy).

The main Theorem

If

is satisfied by the SG/CG graph model, then every path satisfying it is an
algorithms for the robots to clear the graph and no recontamination
can occur during the clearing process.

Example: Graph-Clear strategy

Outline

• Introduction to pursuit-evasion problem

• Compute clearing strategies by model checking

• Find optimal execution of cleaning strategies

• Conclusions

Time-optimal search strategies

• The model-checker-based strategy-search can result in solutions of
varying time periods in terms of occupancy steps

Optimizing the clearance time under resource
constraints: assumptions
• Vertex sweeping and edge clearing costs remain in terms of number

of robots.

• Robot travel-distances along edges are specified.

• Robot transition from edge to vertex is assumed to need same time
for all robots everywhere.

• All robots are assumed to travel with same speed, the travel time of
robots is proportionate to distance

LP system for optimal strategies (1)

• Assumptions
• Let 𝑙 = 𝑛 +𝑚 be the number of possible locations, and 𝑘 searchers.

• The graph can be cleared in 𝑛 steps.

• Initially searchers are placed into a vertex or an edge.

• General constraints
• 𝑙 × (𝑛 + 1) binary LP variables 𝑋1, … , 𝑋𝑙∙(𝑛+1)for locations of each robot

• The initial location of each robot

𝑋𝑗∙𝑙+1 +⋯+ 𝑋 𝑗+1 ∙𝑙 = 1

• The location of each robot at the 𝑖-th step

𝑋𝑖∙𝑘∙𝑙+𝑗∙𝑙+1 +⋯+ 𝑋𝑖∙𝑘∙𝑙+ 𝑗+1 ∙𝑙 = 1

• Δ1 = 𝑛 + 1 ∙ 𝑘 ∙ 𝑙

LP system for optimal strategies (2)

• General constraints
• For each robot moving from location 𝑝 to 𝑞,

2 ∙ 𝑋𝑓 𝑝,𝑞 − 𝑋 𝑖−1 ∙𝑘∙𝑙+𝑗∙𝑙+𝑝 − 𝑋𝑖∙𝑘∙𝑙+𝑗∙𝑙+𝑞 ≤ 0

where

𝑓 𝑝, 𝑞 = Δ1 + 𝑖 − 1 ∙ 𝑘 ∙ 𝑙2 + 𝑗 ∙ 𝑙2 + 𝑝 − 1 ∙ 𝑙 + 𝑞

• The following constraint guarantee that only one of 𝑙2 variables is 1

 1≤𝑝,𝑞≤𝑙𝑋𝑓 𝑝,𝑞 = 1

• Δ2 = 𝑛 ∙ 𝑘 ∙ 𝑙2

LP system for optimal strategies (3)

• General constraints
• Let 𝐷𝑖 be the maximum distance that a robot can move at the 𝑖-th step

 0≤𝑗<𝑘 1≤𝑝,𝑞≤𝑙 𝑑𝑝,𝑞 ∙ 𝑋𝑓(𝑝,𝑞) − 𝐷𝑖 ≤ 0

• Δ3 = 𝑛

• Object function
 1≤𝑖≤𝑛𝐷𝑖

LP system for optimal strategies (4)

• Constraints for Graph-Clear strategies
• Let 𝑐𝑒𝑟 be the cost of blocking edge 𝑒𝑟
• 𝑌𝑖∙𝑚+𝑟 represents 𝑒𝑟 being blocked at the 𝑖-th step

𝑐𝑒𝑟 ∙ 𝑌𝑖∙𝑚+𝑟 − 0≤𝑗<𝑘𝑋𝑖∙𝑘∙𝑙+𝑗∙𝑙+𝑛+𝑟 ≤ 0

• The following equation guarantees that 𝑌𝑖∙𝑚+𝑟 is 1 iff the number of robots in
the edge is sufficient

 𝑗=0
𝑘−1𝑋𝑖∙𝑘∙𝑙+𝑗∙𝑙+𝑛+𝑟 + 𝑐𝑒𝑟 − 1 − 𝑘 ∙ 𝑌𝑖∙𝑚+𝑟 ≤ 𝑐𝑒𝑟 − 1

• Δ4 = 𝑛 ∙ 𝑚

LP system for optimal strategies (5)

• Constraints for Graph-Clear strategies
• Let 𝑐𝑣𝑟 be the cost of sweeping vertex 𝑣𝑟
• 𝑍𝑖∙𝑛+𝑟 represents 𝑣𝑟 being swept at the 𝑖-th step

𝑐𝑣𝑟 ∙ 𝑍𝑖∙𝑛+𝑟 − 0≤𝑗<𝑘𝑋𝑖∙𝑘∙𝑙+𝑗∙𝑙+𝑟 ≤ 0

• The following equation guarantees that 𝑍𝑖∙𝑛+𝑟 is 1 iff the number of robots in
the vertex is sufficient

 𝑗=0
𝑘−1𝑋𝑖∙𝑘∙𝑙+𝑗∙𝑙+𝑟 + 𝑐𝑣𝑟 − 1 − 𝑘 ∙ 𝑍𝑖∙𝑛+𝑟 ≤ 𝑐𝑣𝑟 − 1

• Each adjacent edge 𝑒𝑠 has to be blocked during sweeping

𝑍𝑖∙𝑛+𝑟 − 𝑌𝑖∙𝑚+𝑠 ≤ 0

• Δ5 = 𝑛2

LP system for optimal strategies (6)

• Constraints for Graph-Clear strategies
• A Graph-Clear strategy clears one vertex at each step

 𝑟=1
𝑛 𝑍𝑖∙𝑛+𝑟 ≥ 1

• When a strategy finishes, all vertices have to cleared

 𝑖=1
𝑛 𝑍𝑖∙𝑛+𝑟 ≥ 1

• Contiguous search requirement

𝑍𝑖∙𝑛+𝑟 − 𝑗=1
𝑖−1 𝑝∈𝑉𝑟 𝑍𝑗∙𝑛+𝑝 ≤ 0

𝑌𝑖∙𝑚+𝑟 − 𝑗=1
𝑖 𝑝∈𝐸𝑟 𝑍𝑗∙𝑛+𝑝 ≤ 0

𝑌(𝑖−1)∙𝑚+𝑟 − 𝑗=1
𝑖 𝑍𝑗∙𝑛+𝑝 − 𝑌𝑖∙𝑚+𝑟 ≤ 0

• Δ = Δ1 + Δ2 + Δ3 + Δ4 + Δ5

LP system for optimal strategies (7)

• Constraints for executing a predefined strategy
• 𝑗=1

𝑛 𝑋𝑖∙𝑛∙𝑙+𝑗∙𝑙+𝑛+𝑟 ≥ 𝑐𝑒𝑟
• 𝑗=1

𝑛 𝑋𝑖∙𝑛∙𝑙+𝑗∙𝑙+𝑟 ≥ 𝑐𝑣𝑟
• Δ = Δ1 + Δ2 + Δ3

Example: execution of Graph-Clear strategy

Example: an optimal Graph-Clear strategy

Outline

• Introduction to pursuit-evasion problem

• Compute clearing strategies by model checking

• Find optimal execution of cleaning strategies

• Conclusions

Conclusions

• Methodology was developed to use model checking methods to find
pursuit-evasion solutions for robots and use Linear Programming to
derive execution strategies for time optimization.

• Model checking methods can be implemented onboard robots to
enhance their collective problem solving ability.

• Coordination of real-time execution robustness is a future problem
yet.

Reference

• Hongyang Qu, Andreas Kolling, Sandor M Veres. Formulating Robot
Pursuit-Evasion Strategies by Model Checking. 19th World Congress of
the International Federation of Automatic Control (IFAC’14), pages
3048-3055, 2014

• Hongyang Qu, Andreas Kolling, Sandor M Veres. Computing Time-
Optimal Clearing Strategies for Pursuit-Evasion Problems with Linear
Programming. Towards Autonomous Robotic Systems - 16th Annual
Conference (TAROS’15), page 216-228, 2015

